Instituto Nacional de Investigaciones Nucleares

Alternatives for Financing New Nuclear Reactors in Mexico

Gustavo Alonso, Javier C. Palacios, Jose R. Ramirez, Luis C. Longoria, Edmundo del Valle

Nuclear Power In Mexico

- Two identical units BWR/5 reactors (1931 MWt Nominal Power)
- Built under an Administration Contract (multiple construction delays)
- Commercial operation
 - Unit 1, July 29,1990,
 - Dit 2, April 10, 1995

- September 1999, Stretch Power Uprate in both units (105% nominal Power 2027 MWt)
- For the last 10 years provided ~10% of the Total Electricity Generation in Mexico
- They represent only 2.7% of the installed capacity in 2008
- Currently, an Extended Power Uprate is under revision by the Mexican Regulatory Body (120% nominal Power 2317 MWt)

Plans for New Nuclear Power

- Since 2003 several viability nuclear power studies have been done in Mexico
- The electricity state company (CFE) has considered it as an alternative option
- The decision is highly political
- According to Mexican Law the generation of nuclear power is exclusively operated by CFE
- An International solicitation is mandatory
- Any new nuclear project is forecast to be from own resources or under a turn key project.

Why Nuclear is Considered Today

- High volatility of gas prices
- Concern for CO₂ emissions
- National Security
- Better Performance
- Economical generation costs

Reactor Alternatives

General Characteristics of a Nuclear Power Plant

Lifetime (years)	Capacity Factor (%)	Power Output (MW)	Constructio n Time (years)	Overnigh t Cost (US\$/kW)	Fuel Cost US\$/MWh	O&M Cost US\$/MW h
40	90	135 0	5	2500- 3500	6.80	7.83

ABWR	1350 MW
EPR	1600 MW
AP1000	1100 MW
ACR 1000	1100 MW

Technologies Cost Share

Overnight Costs

- EdF Flamanville, France, EPR: EUR 3.3 billion/US\$4.8 billion, so EUR 2000/kWe or US\$2900/kWe
- Bruce Power Alberta, Canada, 2x1100 MWe ACR, US\$6.2 billion, so US\$2800/kWe
- CGNPC Hongyanhe, China, 4x1080 CPR-1000 US\$6.6 billion, so US\$1530/kWe
- AEO Novovronezh, Rusia, 6&7 2136 MWe net for US\$5 billion, so US\$2340/kWe
- KHNP Shin Kori, Korea 3&4 1350 MWe APR-1400 for US\$5 billion, so US\$1850/kWe
- FPL Turkey Point, USA, 2 x 1100 MWe AP1000 US\$2444 to US\$3582/kWe
- Progress Energy Levy County, USA, 2 x 1105 MWe AP1000 US\$3462/kWe
- NEK Belene, Holand 2x1000 MWe AES-92 EUR 3.9 billion (no first core), so EUR 1950 or US\$3050/kWe
- UK composite projection US\$2400/kWe

Overnight Costs

- NRG South Texas, USA, 2 x 1350 MWe ABWR US\$8 billion, so US\$2900/kWe
- CPI Haiyang, China, 2 x 1100 MWe AP1000 US\$3.25 billion, so US\$1477/kWe
- CGNPC Ningde, China, 4 x 1000 MWe CPR-1000 US\$7.145 billion, so US\$1786/kWe
- CNNC Fuqing, China, 2 x 1000 MWe CPR-1000 (?) US\$2.8 billion, so US\$1400/kWe
- CGNPC Bailong/Fangchengang, China, 2 x 1000 MWe CPR-1000 US\$3.1 bilion, so US\$1550/kWe
- CNNC Tianwan, China, 3&4, 2 x 1060 MWe AES-91 US\$3.8 billion, so US\$1790/kWe

The World Nuclear Association 3000 US\$/kWe

The Update of the MIT 4000 US\$/kWe assuming a penalty for delays from previous US experiences, if these are not taken into account then 3000 US\$/kWe

Source: The Economics of Nuclear Power, <u>www.world-nuclear.org/info/inf02.html</u> Update of the MIT 2003. Future of the Nuclear Power. 2009 Massachusetts Institute of Technology.

Levelized Electricity Cost

	Levelized Cost US\$/MWh (Generation)			Investment Cost US\$ Millions			Investment no interest US\$ Millions
Discount Rate	5%	8%	10%	5%	8%	10%	Overnight Cost US\$/kW
Overnight Cost US\$/kW							X Reactor Power
2500	36.63	47.98	55.95	4028.57	4334.59	4547.82	3375
3000	40.97	54.57	64.14	4834.28	5201.51	5457.39	4050
3500	45.31	61.17	72.34	5639.99	6068.43	6366.95	4725

Investment

- Nuclear power deployment requires an extensive capital investment that in many cases prevents its expansion.
- The deployment of a single unit of 1000 MWe with current costs requires around 5 billion US dollars assuming no delays or unforeseen problems.

Legal Considerations

- According to the Mexican Constitution the construction of new Nuclear Power Plants is an exclusive government activity.
- The electricity company (CFE) prepares a forecast for the following ten years requirements for electricity expansion.
- The President proposes to congress the nuclear program.

- The Congress review the proposal to determine the fiscal budget for the following year.
- This budget contains the necessary investments for the construction of new electricity power plants
- The most viable option for the investment for nuclear power is that the financing comes from the federal budget.
- Another option is if the financing could be considered as a Financed Public Work, where funds can come from a third party.

Mexican Electrical Sector

Financing Alternatives

- Two financing alternatives can be used to support such a project:
 - Financing comes from federal budget for a long term investment.
 - International and national credits to support the nuclear project.

- To be a loan candidate the viability of the nuclear project must be demonstrated. It assumes among other things to have a qualified national infrastructure.
- Also, the utility (CFE) must have a good international credit status as determined by international companies. This status is already achieved by CFE.

Own Resources Investment

Electrical Power (MWe)	Opportuni ty Cost	Overnight Cost (US\$/kW)	Investme withou Interes (millions US\$)	ent In t t Op of Cos	Investment with Opportunity Cost (millions of US\$)			
1350	8%	2500 3000 3500	3375 4050 4725		4335 5202 6068			
Annual								
Power Output GWh	Fuel Cost US\$	O&M Cost US\$	Backend & Dismantling Fund US\$	Electricit y Selling Price US\$/MW h	Selling Inco US\$	me		
10,359.92	96,192,154	48,512,045	48,512,045	87.07	902,038,23	34		
				100.00	1,035,992,0)00		

Cumulative Cash Flow 87.07 US\$/MWh

Cumulative Cash Flow 100 US\$/MWh

Credit Resources

- The main international credit assumptions are:
 - Payment credit period: 15 years.
 - 30 payments, each one every 6 months
 - Grace period: 6 months after commercial operation.
 - Annual discount rate in dollars: 8%.
- The main national credit assumptions are:
 - Payment credit period: 5 years.
 - 10 payments, each one every 6 months
 - First payment: at start up of commercial operation.
 - Discount rate in dollars: 12%.

Cumulative Cash Flow 87.07 US\$/MWh

Cumulative Cash Flow 100 US\$/MWh

Conclusion

- Financing for the deployment of New Nuclear Plants seems to be a feasible option.
- Investment by using own resources can recover the investment in less than ten years depending on the overnight cost considered and the selling price of the electricity
- For a medium average price 100 US\$/MWh it can be recovered between 6 to 8 years, therefore there is a great dependence of the electricity selling price.
- This alternative reduces the cash flow of the company

Conclusion

- Credit Resources is an available option. In the cases analized the combination of a high overnight cost and a low electricity selling price can result in a negative cash flow which is not admissible for this alternative.
- An increase in the sell price of electricity, can result in a positive cash flow at all times.
- This alternative produces a lower cumulative cash flow in comparison to using own resources
- In this alternative there is no reduction on the company's cash flow.

Discussion

- In the last 10 years The Laguna Verde Power Plant has provided 5% per year of the total annual electricity generation with a very good operational record.
- A diversification strategy can give greater protection against primary fuels volatility prices.
- Greater energy security eliminates external energy dependence.
- Reduction in carbon emissions

Discussion

- Economic competitive option.
- In Mexico several studies have already considered the expansion of nuclear power
- In Mexico the use of nuclear power is a Presidential decision that involves many political constraints and also requires the approval of the Congress.
- Public opinion remains a big obstacle.